NATURAL NUMBERS (\mathbf{N}):

$1,2,3,4 \ldots$
POSITIVE INTEGERS (${ }^{+} \mathrm{Z}$ or $\left.{ }^{+} \mathrm{I}\right)$:

WHOLE NUMBERS (W):

$0,1,2,3,4 \ldots$

Real Numbers
INTEGERS (\mathbf{Z} or I): Whole numbers and their opposites.

$$
\ldots-4,-3,-2,-1,0,1,2,3,4 \ldots
$$

OPPOSITE OF THE NATURAL NUMBERS : $\ldots-4,-3,-2,-1$
NEGATIVE INTEGERS (${ }^{-} \mathbf{Z}$ or ${ }^{-} \mathbf{I}$):

RATIONAL NUMBERS (\mathbf{Q}): Any number

that can be expressed as the ratio of two integers,
or any number that can be expressed as a repeating decimal number.
$\frac{2}{3},-\frac{1}{10}, \frac{11}{4}, 4 . \overline{3},-6.1 \overline{7} \overline{8}$
$8 \rightarrow \frac{8}{1} \rightarrow 8 . \overline{0}, \quad 0 \rightarrow \frac{0}{1} \rightarrow 0 . \overline{0}$
$-3 \frac{4}{5} \rightarrow-\frac{19}{5} \rightarrow-3.8$,
$6 \frac{3}{11} \rightarrow \frac{69}{11} \rightarrow 6 . \overline{2} \overline{7}$
$\sqrt{100} \rightarrow 10 \rightarrow \frac{10}{1}, \rightarrow 10 . \overline{0}$

IRRATIONAL NUMBERS (Ir): Any number whose decimal representation can not be expressed as the ratio of two integers, or any number whose decimal representation can not be expressed as a repeating decimal number.

$$
\begin{aligned}
& \sqrt{5} \rightarrow 2.236067977 \ldots \\
& \quad \sqrt[3]{25} \rightarrow 2.924017738 \ldots
\end{aligned}
$$

$1.232332333 \ldots$,
105.467269765488541...
$\pi \approx 3.1415926 \ldots$

REAL NUMBERS (\mathbf{R}): Any number that is either rational or irrational (every number you have ever worked with is probably a real number.)

List as many of the symbols, $\mathbf{R}, \mathbf{Q}, \mathbf{I r}, \mathbf{Z}, \mathbf{W}, \mathbf{N}$, that represent sets to which the given number belongs.

1. 2.5 : \qquad
2. $-\frac{4}{9}$: \qquad
3. 15 : \qquad
4. $-\sqrt{36}$:
5. $8 \frac{7}{8}$:
6. $0.515515551 \ldots$: \qquad
7. $6 . \overline{243}$: \qquad
8. $\quad-534$: \qquad
9. $\sqrt{5}:$ \qquad
10. 0 : \qquad

Given the set of numbers $\left\{-50,1 . \overline{5}, 0, \sqrt{10}, \frac{4}{5}, 30,-4 \frac{2}{3}, 4.636633666333 \ldots, 5.2, \sqrt{9},-\frac{24}{8}\right\}$, list the numbers from the set that belong to each number set.

Natural Numbers: \qquad
Real Numbers: \qquad
Rational Numbers \qquad
Integers \qquad
Whole Numbers: \qquad
Irrational Numbers \qquad
Mathematical Expressions: A number, a variable or a combination of a number(s) and/or variable(s) joined together by mathematical operations and/or functions.

Mathematical Sentences: Two expressions joined together by an equal sign (making an"equation") or by and inequality symbol (making an "inequality").

Order Property for Real Numbers: If $a>b$, then a is located to the right of b on the real number line.
Absolute Value: The absolute value is a measure of the number's distance from zero on the number line.

$$
\begin{gathered}
|9|=9 \quad|-12|=12 \quad\left|-\frac{3}{5}\right|=\frac{3}{5} \quad|-1.325|=1.325 \quad|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right\} \\
\left|-\frac{9}{10}\right|= \\
\end{gathered}\left|5 \frac{3}{4}\right|=\quad|-6.002|=\quad|.0003|=\quad . \quad .
$$

Mathematical Sentences: Place a " $=", "<"$, or " \gg between the expressions to make a true statement.

Prime Numbers: Any natural number (other than 1) for which the only integer factors are the number " 1 " and the number itself.

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \text { etc } \ldots
$$

Composite Numbers: The natural numbers (other than 1) that are not prime.

$$
4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30, \text { etc.... }
$$

Fundamental Principle of Fractions: If $\frac{a}{b}$ is a fraction of relatively prime numbers and c is a nonzero real number, then $\frac{a \cdot c}{b \cdot c}=\frac{a}{b} . \quad$ Note: \boldsymbol{a} and \boldsymbol{b} are relatively prime means they have no common factor.
$\frac{10}{15}=\frac{2 \cdot 5}{3 \cdot 5}=\frac{2}{3}$
$-\frac{24}{20}=-\frac{6 \cdot 4}{5 \cdot 4}=-\frac{6}{5}$
$\frac{45}{72}=\frac{5 \cdot 9}{8 \cdot 9}=\frac{5}{8}$
$-\frac{144}{84}=-\frac{12 \cdot 12}{7 \cdot 12}=-\frac{12}{7}$ or $-1 \frac{5}{7}$
$\frac{40}{50}=$
$-\frac{64}{24}=$

$$
\frac{150}{180}=
$$

A fraction of relatively prime integers is said to be in lowest terms or simplified form.
Examples: $\frac{9}{10}, \frac{6}{25}, \frac{8}{15}, \frac{4}{21}, \frac{15}{16}, \frac{21}{100}, \frac{36}{25}, \frac{12}{35}, \frac{45}{32}, \frac{81}{100}, \frac{27}{16}$ these fractions cannot be reduced or simplified any further. " 1 " is the greatest common factor of each pair of numerator and denominator.

Prime Factorization: $\begin{array}{llll}12=4 \cdot 3 & 24=4 \cdot 6 \\ 12=2 \cdot 2 \cdot 3 & 24=2 \cdot 2 \cdot 2 \cdot 3 \\ 24=2^{3} \cdot 3 & 60=6 \cdot 10 & 900=9 \cdot 100 \\ & & 60=2 \cdot 3 \cdot 2 \cdot 5 & 900=3 \cdot 3 \cdot 10 \cdot 10 \\ & 900=3 \cdot 3 \cdot 2 \cdot 5 \cdot 2 \cdot 5 \\ & & 900=2^{2} \cdot 3^{2} \cdot 5^{2}\end{array}$
$\frac{18}{24}=\frac{2 \cdot 3 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 3}=\frac{3}{2 \cdot 2} \cdot \frac{2}{2} \cdot \frac{3}{3} \cdot=\frac{3}{4} \quad \frac{60}{80}=\frac{2 \cdot 2 \cdot 3 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 5}=\frac{3}{2 \cdot 2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{5}{5}=\frac{3}{4}$
$\frac{108}{160}=\frac{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5}=\frac{3 \cdot 3 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 5} \cdot \frac{2}{2} \cdot \frac{2}{2}=\frac{27}{40} \quad \frac{90}{105}=\frac{2 \cdot 3 \cdot 3 \cdot 5}{3 \cdot 5 \cdot 7}=\frac{2 \cdot 3}{7} \cdot \frac{3}{3} \cdot \frac{5}{5}=\frac{6}{7}$
$\frac{96}{160}=$
$\frac{244}{360}=$

Multiplying Fractions:

$\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$, if $b \neq 0$ and $d \neq 0 \quad$ multiply the tops together and multiply the bottoms together
Examples: $\frac{2}{3} \cdot \frac{4}{5}=\frac{8}{15} \quad \frac{5}{8} \cdot \frac{2}{7}=\frac{10}{56}=\frac{5}{28} \quad \frac{11}{15} \cdot \frac{8}{9}=\frac{88}{135}$

$$
\frac{10}{27} \cdot \frac{9}{25}=\frac{2 \cdot 5}{3 \cdot 9} \cdot \frac{9}{5 \cdot 5}=\frac{2}{15}
$$

$$
\frac{7}{30} \cdot \frac{25}{28}=\frac{7}{5 \cdot 6} \cdot \frac{5 \cdot 5}{4 \cdot 7}=\frac{5}{24} \quad \frac{88}{45} \cdot \frac{25}{36}=\frac{4 \cdot 22}{5 \cdot 9} \cdot \frac{5 \cdot 5}{4 \cdot 9}=\frac{110}{81}
$$

$\frac{7}{11} \cdot \frac{2}{3}=$
$\frac{15}{16} \cdot \frac{20}{27}=$
$\frac{8}{15} \cdot \frac{25}{32}=$
Dividing Fractions: $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}$, if $b \neq 0, \mathrm{~d} \neq 0$ and $\mathrm{c} \neq 0 \quad$ Reciprocal of $\frac{c}{d}$ is $\frac{d}{c}$. Their product is 1 .
$\frac{3}{5} \div \frac{2}{7}=\frac{3}{5} \cdot \frac{7}{2}=\frac{21}{10} \quad \frac{9}{10} \div \frac{3}{4}=\frac{9}{10} \cdot \frac{4}{3}=\frac{3 \cdot 3}{2 \cdot 5} \cdot \frac{2 \cdot 2}{3}=\frac{6}{5}$
$\frac{20}{21} \div \frac{16}{35}=\frac{20}{21} \cdot \frac{35}{16}=\frac{4 \cdot 5}{3 \cdot 7} \cdot \frac{5 \cdot 7}{4 \cdot 4}=\frac{25}{12}$
$\frac{5}{18} \div \frac{7}{12}=$

$$
\frac{16}{9} \div \frac{8}{15}=
$$

$\frac{27}{40} \div \frac{63}{25}=$

$$
\frac{32}{45} \div \frac{28}{75}=
$$

To add or subtract fractions with like denominators: $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$ and $\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$

$$
\begin{array}{ll}
\frac{2}{9}+\frac{5}{9}=\frac{2+5}{9}=\frac{7}{9} \quad \frac{7}{10}-\frac{4}{10}=\frac{7-4}{10}=\frac{3}{10} \quad \frac{17}{18}-\frac{11}{18}=\frac{17-11}{18}=\frac{6}{18}=\frac{1 \cdot 6}{3 \cdot 6}=\frac{1}{3} \\
\frac{19}{24}-\frac{7}{24}= & \frac{13}{30}+\frac{11}{30}=
\end{array}
$$

$$
12 \frac{1}{3}+4 \frac{5}{6}=12 \frac{2}{6}+4 \frac{5}{6}=16 \frac{7}{6}=17 \frac{1}{6}
$$

$$
8 \frac{4}{5}-2 \frac{7}{8}=8 \frac{32}{40}-2 \frac{35}{40}=7 \frac{72}{40}-2 \frac{35}{40}=5 \frac{37}{40}
$$

$$
18 \frac{7}{16}+5 \frac{2}{3}=
$$

$$
10 \frac{2}{9}-4 \frac{5}{6}=
$$

Multiply and Divide Mixed Numbers:

$$
\begin{array}{ll}
2 \frac{1}{2} \cdot 4 \frac{2}{3}=\frac{5}{2} \cdot \frac{14}{3}=\frac{5}{2} \cdot \frac{2 \cdot 7}{3}=\frac{35}{3}=11 \frac{2}{3} & 3 \frac{1}{3} \div 1 \frac{1}{4}=\frac{10}{3} \div \frac{5}{4}=\frac{10}{3} \cdot \frac{4}{5}=\frac{2 \cdot 5}{3} \cdot \frac{4}{5}=\frac{8}{3}=2 \frac{2}{3} \\
4 \frac{4}{5} \cdot 2 \frac{3}{16}= & 3 \frac{3}{4} \cdot 3 \frac{1}{8}= \\
2 \frac{3}{10} \cdot 5=\frac{23}{10} \cdot \frac{5}{1}=\frac{23}{2 \cdot 5} \cdot \frac{5}{1}=\frac{23}{2}=11 \frac{1}{2} & 4 \frac{3}{8} \div 7=\frac{35}{8} \div \frac{7}{1}=\frac{35}{8} \cdot \frac{1}{7}=\frac{5 \cdot 7}{8} \cdot \frac{1}{7}=\frac{5}{8} \\
2 \frac{5}{8} \cdot 12= & 4 \frac{4}{9} \div 50=
\end{array}
$$

$30 \cdot 2 \frac{3}{20}=\frac{30}{1} \cdot \frac{43}{20}=\frac{3 \cdot 10}{1} \cdot \frac{43}{2 \cdot 10}=\frac{3}{1} \cdot \frac{43}{2}=\frac{129}{2}=64 \frac{1}{2}$

$$
24 \div 6 \frac{2}{5}=\frac{24}{1} \div \frac{32}{5}=\frac{24}{1} \cdot \frac{5}{32}=\frac{3 \cdot 8}{1} \cdot \frac{5}{4 \cdot 8}=\frac{3}{1} \cdot \frac{5}{4}=\frac{15}{4}=3 \frac{3}{4}
$$

$10 \cdot 1 \frac{3}{8}=$

$$
25 \div 2 \frac{3}{16}=
$$

