MATH 241 Chapter 15, Section 7

Cylindrical coordinates represent a point P in space by ordered triples (r, θ, z) in which $r \ge 0$, where r and θ are polar coordinates for the vertical projection of P on the xy-plane and z is the rectangular vertical coordinate.

Equations relating rectangular and cylindrical coordinates

$$\lim_{n \to \infty} S_n = \iiint_D f \, dV = \iiint_D f \, dz \, r \, dr \, d\theta$$

How to integrate in cylindrical form: sketch the graph, find z limits of integration then r limits and finally theta limits then compute the value.

Spherical coordinates represent a point P in space by ordered triples (ρ, ϕ, θ) in which ρ is the distance from P to the origin $\rho \ge 0$, ϕ is the angle \overrightarrow{OP} makes with the positive z-axis and θ is the angle from cylindrical coordinates.

Equations relating spherical coordinates to Cartesian and cylindrical coordinates

$$\lim_{n \to \infty} S_n = \iiint_D f(\rho, \phi, \theta) \, dV = \iiint_D f(\rho, \phi, \theta) \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Conversion Formulas

 $x = r\cos\theta \quad x = \rho\sin\phi\cos\theta \quad r = \rho\sin\phi$ $y = r\sin\theta \quad y = \rho\sin\phi\sin\theta \quad z = \rho\cos\phi$ $z = z \qquad z = \rho\cos\phi \qquad \theta = \theta$

Formulas for dV in triple integrals

$$dV = dxdydz$$
$$dz r dr d\theta$$
$$\rho^2 \sin \phi d\rho d\phi d\theta$$

Evaluate

$$\int_{0}^{2\pi} \int_{0}^{1} \int_{-\frac{1}{2}}^{\frac{1}{2}} (r^{2} \sin^{2} \theta + z^{2}) dz r dr d\theta$$

Set up the integral for the right circular cylinder whose base is the circle $r = 3\cos\theta$ and whose top lies in the plane z = 5 - x

Evaluate
$$\int_{0}^{\frac{3\pi}{2}} \int_{0}^{\pi} \int_{0}^{1} 5\rho^{3} \sin^{3}\phi d\rho d\phi d\theta$$

Find the spherical integration and evaluate for the volume of $\rho = 1, z \ge 0$, and above by the cardioid of revolution $\rho = 1 + \cos \phi$

