\qquad
Chapter 15, Section 6

Moments and Center of Masses

The first moment of a solid region D about a coordinate plane is defined as the triple integral over D of the distance from a point (x, y, z) in D to the plane multiplied by the density of the solid at that point.

$$
M_{x y}=\iiint_{D} z \delta(x, y, z) d V \quad M_{x z}=\iiint_{D} y \delta(x, y, z) d V \quad M_{y z}=\iiint_{D} x \delta(x, y, z) d V
$$

The center of mass is found from the first moments, $(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{M}, \frac{M_{x z}}{M}, \frac{M_{x y}}{M}\right)$

When the density of a solid object or plate is a constant, the center of mass is called the centroid of the object.

An object's first moments tell us about balance and about the torque the object experiences about different axes in a gravitational field. The second moment or moment of inertia is used for looking at how much energy is generated.

THREE-DIMENSIONAL SOLID

Mass: $\quad M=\iiint_{D} \delta d V$
First moments about the coordinate planes:

$$
M_{y z}=\iiint_{D} x \delta d V, \quad M_{x z}=\iiint_{D} y \delta d V, \quad M_{x y}=\iiint_{D} z \delta d V
$$

Center of mass:

$$
\bar{x}=\frac{M_{y z}}{M}, \quad \bar{y}=\frac{M_{x z}}{M}, \quad \bar{z}=\frac{M_{x y}}{M}
$$

TWO-DIMENSIONAL PLATE
Mass: $\quad M=\iint_{R} \delta d A \quad \delta=\delta(x, y)$ is the density at (x, y).
First moments: $\quad M_{y}=\iint_{R} x \delta d A, \quad M_{x}=\iint_{R} y \delta d A$
Center of mass: $\quad \bar{x}=\frac{M_{y}}{M}, \quad \bar{y}=\frac{M_{x}}{M}$

THREE-DIMENSIONAL SOLID

About the x-axis:

$$
I_{x}=\iiint\left(y^{2}+z^{2}\right) \delta d V \quad \delta=\delta(x, y, z)
$$

About the y-axis: $\quad I_{y}=\iiint\left(x^{2}+z^{2}\right) \delta d V$
About the z-axis:

$$
I_{z}=\iiint\left(x^{2}+y^{2}\right) \delta d V
$$

About a line L :

$$
I_{L}=\iiint r^{2}(x, y, z) \delta d V
$$

$r(x, y, z)=$ distance from the point (x, y, z) to line L

TWO-DIMENSIONAL PLATE
$\begin{array}{lll}\text { About the } x \text {-axis: } & I_{x}=\iint y^{2} \delta d A & \delta=\delta(x, y) \\ \text { About the } y \text {-axis: } & I_{y}=\iint x^{2} \delta d A & \begin{array}{l}r(x, y)=\text { distance from } \\ (x, y) \text { to } L\end{array} \\ \text { About a line } L: & I_{L}=\iint r^{2}(x, y) \delta d A & I_{0}=\iint\left(x^{2}+y^{2}\right) \delta d A=I_{x}+I_{y}\end{array}$

Find the moments of inertia about the coordinate axes of a think rectangular plate of constant density bounded by the lines $x=3$ and $y=3$ in the first quadrant.

Find the centroid of the triangular region cut from the first quadrant by the line $x+y=3$

Find the first moment about the y-axis of a thin plate of density 1 covering the infinite region under the curve $y=e^{\frac{-x^{2}}{2}}$ in the first quadrant.

Find the mass of a thin plate occupying the smaller region cut from the ellipse $x^{2}+4 y^{2}=12$ by the parabola $x=4 y^{2}$ if $\delta(x, y)=5 x$.

