\qquad

Triple integrals in Rectangular Coordinates are used to calculate volumes of three-dimensional shapes, average value of a function over a three-dimensional region. Other applications are vector fields and fluid flow in three dimensions.

The volume of a closed, bounded region D in space is
Finding the limits of integration in the order $d z d y d x$

1. Graph
2. Find the z-limits by drawing a line through a point (x, y) parallel to the z-axis
3. Find the y-limits by drawing a line through a point (x, y) parallel to the y-axis
4. Find the x-limits

The integral is $\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} F(x, y, z) d z d y d x$

Examples:
Volume of rectangular solid Write six different iterated triple integrals for the volume of the rectangular solid in the first octant bounded by the coordinate planes and the planes $x=1, y=2$, and $z=3$. Evaluate one of the integrals.

Volume of solid Write six different iterated triple integrals for the volume of the region in the first octant enclosed by the cylinder $x^{2}+z^{2}=4$ and the plane $y=3$. Evaluate one of the integrals.

Volume inside paraboloid beneath a plane Let D be the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=2 y$. Write triple iterated integrals in the order $d z d x d y$ and $d z d y d x$ that give the volume of D. Do not evaluate either integral.

Here is the region of integration of the integral

$$
\int_{0}^{1} \int_{-1}^{0} \int_{0}^{y^{2}} d z d y d x
$$

Rewrite the integral as an equivalent iterated integral in the order
a. $d y d z d x$
b. $d y d x d z$
c. $d x d y d z$
d. $d x d z d y$
e. $d z d x d y$.

- The region in the first octant bounded by the coordinate planes and the surface $z=4-x^{2}-y$

$F(x, y, z)=x y z$ over the cube in the first octant bounded by the coordinate planes and the planes $x=2, y=2$, and $z=2$

