\qquad
Chapter 15, Section 4

Integrals in Polar Coordinates use "polar rectangles"
Area of a circle

Area of a sector

Area of a small slice of a sector

Area of a region in Polar Coordinates

Examples:

Find the interval for theta and r when the region is enclosed by the semicircle $x^{2}+y^{2}=2 y, y \geq 0$

Change the Cartesian integral to Polar and then evaluate
$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$
$\int_{0}^{2} \int_{0}^{x} y d y d x$
$\int_{\sqrt{2}}^{2} \int_{\sqrt{4-y^{2}}}^{y} d x d y$

Sketch the region and set up an equivalent in Cartesian $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{1}^{\csc \theta} r^{2} \cos \theta d r d \theta$

Find the area of the region inside $r=1+\cos \theta$ and outside $r=1$

