\qquad

DEFINITION The Jacobian determinant or Jacobian of the coordinate transformation $x=g(u, v), y=h(u, v)$ is

$$
J(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} .
$$

THEOREM -Substitution for Double Integrals
Suppose that $f(x, y)$ is continuous over the region R. Let G be the preimage of R under the transformation $x=g(u, v), y=h(u, v)$, which is assumed to be one-to-one on the interior of G. If the functions g and h have continuous first partial derivatives within the interior of G, then

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Examples:

Solve the system

$$
u=2 x-3 y, \quad v=-x+y
$$

For x and y in terms of u and v. Then find the value of the Jacobian $\partial(x, y) / \partial(u, v)$.
Find the image under the transformation $u=2 x-3 y, v=-x+y$ of the parallelogram R in the $x y$-plane with boundaries $x=-3, x=0, y=x$, and $y=x+1$.
Sketch the transformed region in the $u v$-plane.

Use the Transformation and parallelogram R to evaluate

$$
\iint_{R} 2(x-y) d x d y
$$

