\qquad
If a system of equations has at least one solution, then it is defined to be a \qquad .

If a system of equation has no solution, then it is defined to be \qquad .

If a system of equations has Infinitely Many solutions, then it is defined to be a \qquad .

If a system of equation does not have Infinitely Many solutions, then it is defined to be \qquad .

A System of Equations has Infinitely Many Solutions \qquad any ordered pair is a solution.

Solving Systems of Two Equations with Two Variables by Substitution Method
A. $\left\{\begin{array}{c}2 x+y=23 \\ y=x+11\end{array}\right.$
B. $\left\{\begin{array}{c}x=-5 y+1 \\ 3 x-2 y=54\end{array}\right.$
C. $\left\{\begin{array}{c}x-2 y=-11 \\ -3 x+6 y=20\end{array}\right.$

Solving Systems of Two Equations with Two Variables by Linear Combination (Addition or Elimination) Method
D. $\left\{\begin{array}{l}-x+5 y=35 \\ 4 x-3 y=-55\end{array}\right\}$
E. $\left\{\begin{array}{l}7 x-4 y=31 \\ 2 x-6 y=21\end{array}\right\}$
F. $\left\{\begin{array}{l}4 x+10 y=6 \\ 6 x+15 y=9\end{array}\right\}$

Business Functions:

$$
\text { Let } x=\text { number of units sold }
$$

$$
\begin{array}{lll}
\text { Revenue Function : } & \Rightarrow & R(x)=(\text { price per unit sold }) x \\
\text { Cost Function: } & \Rightarrow & C(x)=\text { fixed } \text { costs }+(\text { cost per unit produced }) x \\
\text { Profit Function: } & \Rightarrow & P(x)=\text { Revenue Function }- \text { Cost Function } \\
& & P(x)=R(x) \quad-\quad C(x)
\end{array}
$$

The number of units sold at the Break Even Point matches the number of units sold when the Profit is Zero.

Example: A company that manufactures running shoes has a fixed cost of $\$ 600,000$. Additionally, it costs $\$ 60$ to produce each pair of shoes. They are sold at $\$ 160$ per pair.
A. Write the cost function, $C(x)$, of producing x pairs of running shoes.
B. Write the revenue function, $R(x)$, from the sales of x pairs of running shoes.
C. Determine the break-even point. Describe what this means.
D. How many pairs of shoes must be sold to have a profit of at least $\$ 100,000$?

\#1 Total Measurement		\#2 Total Measurement	$=$	Mix Total Measurement
\#1 Part Measurement	+	\#2 Part Measurement		Mix Part Measurement

Example:

A chemist needs to mix a 12% acid solution with a 20% acid solution to obtain 240 ml of a solution that is 15% acid. How many of ml of each solution should be used?

Let $x=$ The number of
Let $y=$

