\qquad

Polynomial Functions

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+a_{n-3} x^{n-3}+\ldots+a_{n} x^{1}+a_{0}
$$

n is the greatest power on a variable and it must be a whole number.

Every polynomial function is continuous over $(-\infty, \infty)$, which is also the domain of every polynomial function.

Degree of the Polynomial is n. The Leading Coefficient of the Polynomial is a.
End Behavior $\quad \xlongequal{n \text { is Even } \quad n \text { is Odd }}$

Factors of a polynomial function $P(x)$ based upon the graph behavior below.

$(x+4)^{2},(x+4)^{4},(x+4)^{6},(x+4)^{8},(x+4)^{10}, \ldots$ are possible factors (including their multiplcity) of $P(x)$
$(x-3)^{3},(x-3)^{5},(x-3)^{7},(x-3)^{9},(x-3)^{11}, \ldots$ are possible factors of (including their multiplcity) $P(x)$ $(x+1)$ is a factor of $P(x)$

Lowest powers for $P(x)=a(x+4)^{2}(x+1)(x-3)^{3}$ is a polynomial with zeros of \qquad
$Q(x)$ is a polynomial with zeros of 0 (multiplicity 1), 3 (multiplicity 2), and -1 (multiplicity 3) and $Q(1)=-96$

For each polynomial function graphed below write a possible function (with least degree) based upon the graph behavior at the x-axis.

$\underline{\underline{\text { Intermediate Value Theorem }}}$
If f is a continuous functon over $[a, b]$ and $f(a) \neq f(b)$, then for all N between $f(a)$ and $f(b)$ there exists c in (a, b) such that $f(c)=N$. Show that $g(x)=2 x^{5}-8 x^{3}+4$ has a root (zero value) between $x=1$ and $x=2$.

Determine the end behavior of each function

$$
f(x)=2 x^{7}+4 x^{4}-x^{3}+5 x-6
$$

$$
g(x)=-2 x^{6}+x^{5}-3 x^{2}+5 x-10
$$

$$
p(x)=-5(x-4)^{2}(x+1)^{3}
$$

$$
q(x)=2 x(x-2)(x+5)^{4}
$$

