$\qquad$

Standard Form for Quadratic Functions
$y=a(x-h)^{2}+k$
if $a>0$ then the graph opens up, hence a minimum
if $a<0$ then the graph opens down, hence a maximum
Vertex is at $(h, k)$
Axis of Symmetry is $x=h$
$y=a x^{2}+b x+c \quad \Rightarrow \quad$ Axis of Symmetry is $x=-\frac{b}{2 a}$
$\langle\mathrm{ex}\rangle \quad y=x^{2}+12 x+30$

$$
\begin{gathered}
y=\left[x^{2}+12 x\right]+30 \\
y=\left[x^{2}+12 x\right]+30 \\
y=(x \quad)^{2}
\end{gathered}
$$

Vertex: $\qquad$

$$
\begin{gather*}
y=-5 x^{2}-8 x+10 \\
y=\left[-5 x^{2}-8 x\right]+10 \\
y=-5\left[x^{2}+\frac{8}{5} x\right]+10 \\
y=-5\left[x^{2}+\frac{8}{5} x\right]+10 \\
y=-5(x))^{2}
\end{gather*}
$$

Vertex: $\qquad$

$$
\begin{gathered}
y=a x^{2}+b x+c \\
y=0 \\
\Downarrow \\
0=a x^{2}+b x+c \\
\Downarrow \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\Downarrow \\
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

$$
\langle\mathrm{EX}\rangle \quad y=-2 x^{2}+12 x+5
$$

Vertex: $\qquad$ Axis of Symmetry: $\qquad$


What is it? $\qquad$
A popular designer purse sells for $\$ 400$ and 55,000 are sold a month. The company did some research and realized that for each $\mathbf{\$ 2 0}$ decrease in price, they can sell $\mathbf{5 0 0 0}$ more purses per month. How much should the company charge for the purse so they can maximize monthly revenues? Note: letting $\boldsymbol{x}=$ the number of $\boldsymbol{\$} \mathbf{2 0}$ decreases revenue $=($ price $) \cdot($ numbersold $)$

Let's say we are building rectangular vegetable garden against the back of our house with a fence around it, but we only have $\mathbf{1 2 0}$ feet of fencing available. What would be the dimensions (length and width) of the garden (the house serves as an edge ) to make the area of the garden as large as possible? Also, what is this area? Also, what is a reasonable domain for the width of the garden?

