\qquad
Transformations of functions．
Some of the common functions and the respective domain，range and if the function is even，odd or neither ．

$$
\begin{aligned}
& f(x)=1.5 \quad f(x)=x \quad f(x)=|x| \quad f(x)=x^{2} \quad f(x)=\sqrt{x} \quad f(x)=x^{3} \quad f(x)=\sqrt[3]{x} \\
& y=1.5 \quad y=x \quad y=|x| \quad y=x^{2} \quad y=\sqrt{x} \quad y=x^{3} \quad y=\sqrt[3]{x} \\
& \text { D: } \\
& \text { R: } \\
& \text { S: }
\end{aligned}
$$

$$
y=A f(B x+C)+D
$$

Apply effects of C before B and A before D．

Effects the Domain（ Inversely ）．．．＂x＂variable position－〈Horizontal Change 〉
if $\underline{\underline{C}<1}$ the function is＂Translated Horizontally（shift or slide）C units to the right＂
C ：
if $\xlongequal{C>1}$ the function is＂Translated Horizontally（shift or slide）C units to the left＂
if B is negative the function is＂Reflected Horizontally（flipped）over the y－axis＂
$B:$ if $\xlongequal{|B|>1}$ the function is＂Compressed Horizontally（squeezed）toward the y－axis by a factor of $\left|\frac{1}{B}\right|$＂
if $\underline{\underline{0<|B|<1}}$ the function is＂Expanded Horizontally（streched）from the y－axis by a factor of $\left|\frac{1}{B}\right|$＂ Apply effects A before D．

Effects the Range（Directly ）．．．．＂y＂variable position－〈Vertical Change 〉 if A is negative the function is＂Reflected Vertically（flipped）over the x－axis＂

A：if $\xlongequal{|A|>1}$ the function is＂Expanded Vertically（stretched）from the x－axis by a factor of $|A|$＂
if $\underline{\underline{0<|A|<1}}$ the function is＂Compressed Vertically（streched）toward the y－axis by a factor of $|A|$＂ if $\underline{\underline{D<1}}$ the function is＂Translated Vertically（shift or slide）D units down＂
D：
if $\underline{\underline{D>1}}$ the function is＂Translated Vertically（shift or slide）D units up＂

The graph of $y=2\left(\frac{1}{3} x+1\right)^{2}-3$ as a transformation from the parent function $R(x)=x^{2}$. $1^{\text {st }} \quad$ Translate (Shift or Slide) the points of the parent function \qquad units to the \qquad .
$2^{\text {nd }} \quad$ Expand (Stretch) the points of the graph \qquad to positions \qquad times as far from the __-axis.
$3^{\text {rd }} \quad$ Expand (Stretch) the points of the graph \qquad from the \qquad -axis to positions \qquad times as far from the \qquad -axis.
$4^{\text {th }} \quad$ Translate (Shift or Slide) the points of the graph \qquad units \qquad .

$y=2\left(\frac{1}{3} x+1\right)^{2}-3$					
$y=(x)^{2}$					
$-3[$	$-1[$	x	y	$]$	2
-3	-1	0	0	0	-3
-6	-2	-1	1	2	-1
0	0	1	1	2	-1
-9	-3	-2	4	8	5
3	1	2	4	8	5
-12	-4	-3	9	18	15
-6	2	3	9	18	15

Different form changes the order that things are done so now apply effects of C before B and A before D.
$y=A f(B[x+C])+D$
The graph of $g(x)=-3\left|\frac{1}{2}(x+4)\right|-2$ as a transformation from the parent function $A(x)=|x|$
$1^{\text {st }} \quad$ Expand (Stretch) the points of the graph horizontally to positions \qquad times as far from the \qquad -axis.
$2^{\text {nd }} \quad$ Translate (Slide) the points of the parent function \qquad units to the \qquad .
$3^{\text {rd }} \quad$ the points of the graph over the \qquad -axis, then Expand (Stretch) them \qquad to positions
\qquad times as far from the \qquad -axis.
$4^{\text {th }} \quad$ Translate (Slide) the points of the graph \qquad units \qquad

	$y=-3$	$\frac{1}{2}(x+4)$	-2		
$-4 \swarrow$	$2 \swarrow$	x	y	$\searrow \cdot-3$	$\searrow-2$
-4	0	0	0	0	-2
-6	-2	-1	1	-3	-5
-2	2	1	1	-3	-5
-8	-4	-2	2	-6	-8
0	4	2	2	-6	-8
-10	-6	-3	3	-9	-11
2	6	3	3	-9	-11

