MATH 125 College Algebra

Name

Transformations of functions.

Some of the common functions and the respective domain, range and if the function is even, odd or neither .

$$f(x) = 1.5 \quad f(x) = x \quad f(x) = |x| \quad f(x) = x^2 \quad f(x) = \sqrt{x} \quad f(x) = x^3 \quad f(x) = \sqrt[3]{x}$$

$$y = 1.5 \quad y = x \quad y = |x| \quad y = x^2 \quad y = \sqrt{x} \quad y = x^3 \quad y = \sqrt[3]{x}$$

D:
R:
S:

$$y = A f(Bx + C) + D$$

Apply effects of C before B and A before D.

Effects the Domain (Inversely).... "x" variable position - \langle Horizontal Change \rangle

if $\underline{C} < \underline{1}$ the function is "Translated Horizontally (shift or slide) C units to the right "

C:

if $\underline{C > 1}$ the function is "Translated Horizontally (shift or slide) C units to the left "

if B is negative the function is "Reflected Horizontally (flipped) over the y-axis"

 $B: if ||B| > 1 \quad the function is "Compressed Horizontally (squeezed) toward the y-axis by a factor of <math>\left|\frac{1}{B}\right|$ " if ||0| < ||B|| < 1 ||1| the function is "Expanded Horizontally (streched) from the y-axis by a factor of $\left|\frac{1}{B}\right|$ "

Apply effects A before D.

Effects the Range (*Directly*).... "y" variable position - \langle *Vertical Change* \rangle *if A is negative the function is* "Reflected *Vertically* (*flipped*) *over the x-axis*"

A: if
$$|A| > 1$$
 the function is "Expanded Vertically (stretched) from the x-axis by a factor of $|A|$ "

- if 0 < |A| < 1 the function is "Compressed Vertically (streched) toward the y-axis by a factor of |A| " if D < 1 the function is "Translated Vertically (shift or slide) D units down "
- D: if $\underline{D > 1}$ the function is "Translated Vertically (shift or slide) D units up "

The graph of $y = 2\left(\frac{1}{3}x+1\right)^2 - 3$ as a transformation from the parent function $R(x) = x^2$. 1st Translate (Shift or Slide) the points of the parent function ______ units to the ______. 2nd Expand (Stretch) the points of the graph _______ to positions ______ times as far from the __-axis. 3rd Expand (Stretch) the points of the graph _______ from the __-axis to positions ______ times as far from the __-axis.

4th Translate (Shift or Slide) the points of the graph _____ units _____.

Different form changes the order that things are done so now apply effects of C before B and A before D.

$$y = A f \left(\begin{array}{c} B \left[x + C \right] \right) + D$$
The graph of $g(x) = -3 \left| \frac{1}{2}(x+4) \right| - 2$ as a transformation from the parent function $A(x) = |x|$

$$1^{\text{st}} \quad \text{Expand (Stretch) the points of the graph horizontally to positions _____ times as far from the __-axis.}$$

$$2^{\text{nd}} \quad \text{Translate (Slide) the points of the parent function _____ units to the _____.}$$

$$3^{\text{rd}} \quad \underline{\qquad} \text{ the points of the graph over the ___-axis, then Expand (Stretch) them _____ to positions ______.}$$

