\qquad
Slope $=$ \qquad $=$ $\Rightarrow m=$ \qquad

Slope-intercept form of a line. We generally use the variable " m " to represent slope of a line.

$$
\begin{array}{cl}
& m=\frac{y-b}{x-0} \\
m=\frac{y-b}{x} \\
x_{1}, y_{1} \quad x_{2}, y_{2} \\
(0, b) \text { and }(\mathrm{x}, \mathrm{y}) & m x=y-b \\
& m x+b=y \\
y=m x+b \\
y=\frac{1}{2} x+5 &
\end{array}
$$

$$
\text { slope }=\quad y \text {-intercept: }
$$

\qquad
slope of line $u: \quad \mathrm{m}=\frac{n-n}{c-a}=\frac{0}{c-a}=0$
slope of line $v: \mathrm{m}=\frac{j-k}{d-d}=\frac{j-k}{0} \Rightarrow$ slope is undefined
Horizontal Lines have \qquad .

Vertical Lines have \qquad .

Lines that have positive slope are slanted \qquad to the \qquad .

Lines that have negative slope are slanted \qquad to the \qquad _.

Parallel lines have the \qquad slope.

Line n is parallel to Line t both slopes are $\frac{a}{c}$
Perpendicular Lines have slopes that are \qquad :

Slope of line $n: \frac{a}{c}$; Slope of line $\mathrm{m}:-\frac{c}{a}$

Perpendicular lines slopes multiply to give negative 1 unless vertical and horizontal lines. Thus: $\left(\frac{a}{c}\right)\left(-\frac{c}{a}\right)=-1$

Standard Form of a Linear Equation: $A x+B y=C$, where A, B and C are integers and A is positive.
Examples: $\quad 4 x+3 y=12 \quad 2 x-y=3 \quad x+5 y=20$
${ }^{* *}$ Convert equation between Slope-Intercept Form and Standard Form.
$2 x-5 y=20$

$$
y=\frac{4}{3} x+6
$$

Graph Linear Equations using the Two - Intercept Method.
Method: Let $\mathrm{x}=0$ and solve for $\mathrm{y} \quad$ Let $\mathrm{y}=0$ and solve for x
Plot the corresponding points and draw a line through them.
$2 x-3 y=-12$
let $x=0 \quad$ let $\mathrm{y}=0$
$\begin{array}{ll}\Rightarrow & \Rightarrow \\ \Rightarrow & \Rightarrow\end{array}$
\Rightarrow is a point of the line. \Rightarrow \qquad is a point of the line.

Slope Intercept Form: $2 x-3 y=-12$

***Point - Slope Equation for a Line
$m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{y-y_{1}}{x-x_{1}}$
$m\left(x-x_{1}\right)=y-y_{1}$
$\underline{\underline{y-y_{1}}=m\left(x-x_{1}\right)}$

Point-slope form
General form
Standard form
Slope-intercept form

