\qquad

Relation: A set of \qquad
Domain of a \qquad is the set of \qquad that is made up of all the \qquad components of the ordered pairs.

Range of a \qquad is the set of \qquad that is made up of all the \qquad components of the ordered pairs.

Domain: \qquad variable, \qquad Variable, \qquad coordinate, \qquad coordinate

Range: \qquad variable, \qquad Variable, \qquad coordinate, \qquad coordinate
Function: \qquad rems.
, \qquad , -

M: connects a student to the department for which the student has a morning class.
C: connects a student to the department for which the student has their $1^{\text {st }}$ class of the morning.
$\mathbf{M}:\left\{\begin{array}{l}(\text { Bill,Math }),(\text { Sue,Chem.), (Sue,Bio.), (Sue,Bus.), (Jan,Econ.), (Jan,Chem.), } \\ (\text { (Al,Chem.), (Al, Comp. Sc.), (Al, Pol.Sc.), (Jo,Pol.Sc.) }\end{array}\right\}$
C: $\{($ Bill,Math $)$, (Sue,Chem.), (Jan,Business), (Al,Chem.), (Jo,Political Sc.) $\}$
Domain of \mathbf{M} and \mathbf{C} : \qquad
Range of M : \qquad
Range of C: \qquad
Both \mathbf{M} and \mathbf{C} are relations, however only \qquad is a function.

Mathematical Functions are often given by a rule: $f(x)$ is read f "of " x
EX) $f(x)=5 x-2$
What output corresponds to an input of 8 ?
$x=8 \quad$ determine $f(8)$.
What input corresponds to an output of 8 ?
$f(x)=8$, determine the value of x

What is the output of f if the input is $w+2$?
Domain \qquad Range \qquad
\qquad
$f(x)=|x| \quad \Rightarrow f(x)=\left\{\begin{aligned}-x, & x<0 \\ x, & x \geq 0\end{aligned}\right.$ $f(-2)=\quad f(x)=3$ \qquad
Domain \qquad Range \qquad

$$
g(x)=\left\{\begin{array}{cc}
-x, & x \leq-1 \\
1, & -1<x<1 \\
(x-1)^{2}, & x \geq 1
\end{array}\right.
$$

$f(1)=$ \qquad $f(x)=1$ \qquad
Domain \qquad Range \qquad
**Unless stipulated the domain of functions given by a rule will be all possible real numbers for which the function is defined.
$g(x)=\frac{12}{x-5}, \quad$ Domain in set notation \qquad $f(x)=\sqrt{x+4}, \quad$ Domain in set notation \qquad interval notation \qquad interval notation \qquad

State the Domain
State the Range
$f(0)=$ \qquad $f(-2)=$ \qquad $f(5)=$ \qquad

What is x if $g(x)=0$?

What is x if $g(x)=6$?
Examples of Relations that are not Functions:

x-intercept \qquad
y-intercept \qquad

