Linear Transformations：

For each domain and range coordinates apply effects of multiplication（A \＆B ） before addition（C \＆D）．$\quad[[\quad \mathrm{B}$ before C$]]$ and $[[$ A before D$]]$

Effects the Domain（inversely ）．．．＂x＂variable position－〈Horizontal Change 〉
if B is negative the function is＂Reflected Horizontally（flipped）over the y－axis＂
$B:$ if $\xlongequal{|B|>1}$ the function is＂Compressed Horizontally（squeezed）toward the y－axis by a factor of $\left|\frac{1}{B}\right|$＂
if $\underline{\underline{0<|B|<1}}$ the function is＂Expanded Horizontally（streched）from the y－axis by a factor of $\left|\frac{1}{B}\right|$＂
if $\underline{\underline{C<1}}$ the function is＂Translated Horizontally（shift or slide）C units to the right＂
C ： if $\underline{\underline{C>1}}$ the function is＂Translated Horizontally（shift or slide）C units to the left＂

$$
y=A f(B[x+C])+D
$$

Effects the Range（directly ）．．．＂$y^{\prime \prime}$ variable position－〈Vertical Change 〉 if A is negative the function is＂Reflected Vertically（flipped）over the x－axis＂

A：if $\underline{\underline{|A|>1}}$ the function is＂Expanded Vertically（stretched）from the x－axis by a factor of $|A|$＂ if $\underline{\underline{0<|A|<1}}$ the function is＂Compressed Vertically（streched）toward the y－axis by a factor of $|A|$＂
if $\xlongequal{D<1}$ the function is＂Translated Vertically（shift or slide）D units to the down＂
D：

$$
\text { if } \xlongequal{D>1} \text { the function is "Translated Vertically (shift or slide) } \quad D \text { units to the up " }
$$

1. Describe the graph of $f(x)=4 \sqrt{2(x-3)}-1$ as a transformation from the parent function $R(x)=\sqrt{x}$
$1^{\text {st }} \quad$ Compress (Squeeze) the points of the parent function to positions $\frac{1}{2}$ as far from the y-axis..
$2^{\text {nd }} \quad$ Translate (Slide) the points of the graph horizontally 3 units to the right..
$3^{\text {rd }} \quad$ Expand (Stretch) the points of the graph vertically from the x -axis to positions 4 times as far from the x -axis.
$4^{\text {th }} \quad$ Translate (Slide) the points of the graph 1 units down.
2. Describe the graph of $g(x)=-3\left|\frac{1}{2}(x+4)\right|-5$ as a transformation from the parent function

$$
A(x)=|x|
$$

$1^{\text {st }} \quad$ Expand (Stretch) the points of the graph horizontally to positions 2 times as far from the y-axis.
$2^{\text {nd }} \quad$ Translate (Slide) the points of the parent function 4 units to the left.
$3^{\text {rd }} \quad$ Reflect the points of the graph over the x-axis, then Expand (Stretch) them vertically to positions 3 times as far from the x -axis.
$4^{\text {th }} \quad$ Translate (Slide) the points of the graph 5 units down.
3. Describe the graph of $p(x)=\frac{1}{4}\left[-\frac{5}{3}(x-8)\right]^{3}+7$ as a transformation from the parent function

$$
C(x)=x^{3}
$$

$1^{\text {st }} \quad$ Reflect the points of the graph over the y-axis, then Compress (Squeeze) them horizontally to positions $\frac{3}{5}$ as far from the y-axis.
$2^{\text {nd }} \quad$ Translate (Slide) the points of the parent function 8 units to the right
$3^{\text {rd }} \quad$ Compress (Squeeze) the points of the graph vertically toward the x -axis to positions $\frac{1}{4}$ as far from the x -axis.
$4^{\text {th }} \quad$ Translate (Slide) the points of the graph 7 units up.

