1. A function $f(x)$ is the result of applying the transformations below to $R(x)=\sqrt[3]{x}$.

Write a function rule for $f(x)$.

$$
f(x)=
$$

$\qquad$
$1^{\text {st }} \quad$ Translate (Shift or Slide) the points of the parent function 1 units to the right.
$2^{\text {nd }} \quad$ Compress (Squeeze) the points of the graph horizontally to positions $\frac{3}{5}$ as far from the $y$-axis. $3^{\text {rd }} \quad$ Compress (Squeeze) the points of the graph vertically to positions $\frac{1}{2}$ as far from the x -axis.
$4^{\text {th }} \quad$ Translate (Shift or Slide) the points of the graph 10 units down.
2. A function $g(x)$ is the result of applying the transformations below to $T(x)=|x|$.

Write a function rule for $g(x)$.

$$
g(x)=
$$

$\qquad$
$1^{\text {st }} \quad$ Translate (Shift or Slide) the points of the parent function 5 units to the left.
$2^{\text {nd }} \quad$ Expand (Stretch) the points of the graph horizontally to positions 6 times as far from the $y$-axis.
$3^{\text {rd }} \quad$ Reflect the points of the graph over the $y$-axis.
$4^{\text {th }} \quad$ Expand (Stretch) them vertically to positions 4 times as far from the x -axis.
$5^{\text {th }} \quad$ Translate (Shift or Slide) the points of the graph 2 units down.

3, A function $h(x)$ is the result of applying the transformations below to $C(x)=\frac{1}{x}$.

Write a function rule for $h(x)$.

$$
h(x)=
$$

$\qquad$
$1^{\text {st }} \quad$ Translate (Shift or Slide) the points of the parent function 2 units to the right.
$2^{\text {nd }} \quad$ Compress (Squeeze) the points of the graph horizontally to positions $\frac{1}{4}$ as far from the $y$-axis.
$3^{\text {rd }} \quad$ Expand (Stretch) the points of the graph vertically to positions 3 times as far from the x -axis.
$4^{\text {th }} \quad$ Reflect the points of the graph over the x -axis.
$5^{\text {th }} \quad$ Translate (Shift or Slide) the points of the graph 6 units up.
4. A function $r(x)$ is the result of applying the transformations below to $S(x)=(x)^{2}$.

Write a function rule for $r(x)$.

$$
r(x)=
$$

$\qquad$
$1^{\text {st }} \quad$ Translate (Shift or Slide) the points of the parent function 7 unit to the left.
$2^{\text {nd }} \quad$ Expand (Stretch) the points of the graph horizontally to positions 3 as far from the $y$-axis.
$3^{\text {rd }} \quad$ Reflect the points of the graph over the $y$-axis.
$4^{\text {th }} \quad$ Reflect the points of the graph over the x -axis.
$5^{\text {th }} \quad$ Compress (Squeeze) the points of the graph vertically to positions $\frac{2}{3}$ as far from the x -axis.
$6^{\text {th }} \quad$ Translate (Shift or Slide) the points of the graph 9 units up.
5. Describe the graph of $h(x)=5 \sqrt{3 x+2}+1$ as a transformation from the parent function

|  | $P(x)=\sqrt{x}$. |
| :---: | :---: |
| $1{ }^{\text {st }}$ |  |
|  |  |
| $2^{\text {nd }}$ |  |
|  |  |
| $3^{\text {rd }}$ |  |
|  |  |
| $4^{\text {th }}$ |  |
|  |  |
| $5^{\text {th }}$ |  |

6. Describe the graph of $g(x)=3\left(-\frac{1}{2} x+6\right)^{2}-2$ as a transformation from the parent function $Q(x)=x^{2}$
$1^{\text {st }}$
$\qquad$
7. Describe the graph of $f(x)=-\frac{1}{3}\left|\frac{3}{2} x-5\right|+4$ as a transformation from the parent function $N(x)=|x|$.
$1^{\text {st }}$
${ }^{\text {st }}$
$2^{\text {nd }}$
$\qquad$
$3^{\text {rd }}$ $\qquad$
$4^{\text {th }}$
$5^{\text {th }}$
