\qquad
Section 4.5 Video Worksheet

The First Derivative Test

- If a \qquad function f has a local extremum, it must occur at a critical point \qquad .
- The function has a local \qquad at the critical point c if and only if the derivative f^{\prime} \qquad sign as x increases through c.
- Therefore, to test whether a function has a local extremum at a critical point c, we must determine the \qquad of \qquad to the left and right of c.

Theorem 4.9: First Derivative Test

Suppose that f is a continuous function over an interval I containing a critical point c. If f is differentiable over I, except possibly at point c, then $f(c)$ satisfies one of the following descriptions:
i. If f^{\prime} changes sign from positive when $x<c$ to negative when $x>c$, then $f(c)$ is a local maximum of f.
ii. If f^{\prime} changes sign from negative when $x<c$ to positive when $x>c$, then $f(c)$ is a local minimum of f.
iii. If f^{\prime} has the same sign for $x<c$ and $x>c$, then $f(c)$ is neither a local maximum nor a local minimum of f.

Definition

Let f be a function that is differentiable over an open interval I. If f^{\prime} is increasing over I, we say f is concave up over I. If f^{\prime} is decreasing over I, we say f is concave down over I.

Theorem 4.10: Test for Concavity

Let f be a function that is twice differentiable over an interval I.
i. If $f^{\prime \prime}(x)>0$ for all $x \in I$, then f is concave up over I.
ii. If $f^{\prime \prime}(x)<0$ for all $x \in I$, then f is concave down over I.

Definition

Let f be a function that is differentiable over an open interval I. If f^{\prime} is increasing over I, we say f is concave up over I. If f^{\prime} is decreasing over I, we say f is concave down over I.

Theorem 4.11: Second Derivative Test

Suppose $f^{\prime}(c)=0, f^{\prime \prime}$ is continuous over an interval containing c.
i. If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
ii. If $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
iii. If $f^{\prime \prime}(c)=0$, then the test is inconclusive.

For the following find where the graph is increasing, decreasing, maximum, minimums, concave up and concave down along with points of inflection.

$$
f(x)=x^{4}-6 x^{3}
$$

