Let f be a function with Domain D,

Absolute max and mins are called

Extreme Value Theorem -

First Derivative Theorem for local extreme values (also known as relative extrema)

Critical Point -

How to find absolute extrema of a continuous function on a finite closed interval

Only places extreme can occur are

1)
2)
3.

4.

3)
4)
8.

7)
8)
9.

10.

9)
10)
11.

\boldsymbol{x}	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
a	0
b	0
c	5

12.

x	$f^{\prime}(x)$

a	0
b	0
c	-5

13.

\boldsymbol{x}	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
a	does not exist
b	0
c	-2

14.

\boldsymbol{x}	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$
a	does not exist
b	does not exist
c	-1.7

(a)

(c)

(b)

(d)

1. $f(x)=-x-4 \quad-4 \leq x \leq 1$
2. $f(x)=4-x^{2} \quad-3 \leq x \leq 1$
3. $f(x)=|t-5| \quad 4 \leq t \leq 7$
4. $y=x^{3}-2 x+4$
5. $y=\sqrt{3+2 x-x^{2}}$
6. $y= \begin{cases}3-x & x<0 \\ 3+2 x-x^{2} & x \geq 0\end{cases}$
