\qquad

Section 3.2 The Derivative as a function

Theorem Differentiability Implies Continuity

Let $f(x)$ be a function and a be in its domain. If $f(x)$ is differentiable at a, then f is continuous at a.

ditterentiable at 0 .

1. We observe that if a function is not contimuous, it cannot be differentiable, since every differentiable function must be continuous. However, if a function is continuous, it may still fail to be differentiable.
2. We saw that $f(x)=|x|$ failed to be differentiable at 0 because the limit of the slopes of the tangent lines on the left and right were not the same. Visually, this resulted in a sharp comer on the graph of the function at 0 . From this we conclude that in order to be differentiable at a point, a function must be "smooth" at that point.
3. As we saw in the example of $f(x)=\sqrt[3]{x}$, a function fails to be differentiable at a point where there is a vertical tangent line.
4. As we saw with $f(x)=\left\{\begin{array}{l}x \sin \left(\frac{1}{x}\right) \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right.$ a function may fail to be differentiable at a point in more complicated ways as well.

$$
\begin{gathered}
f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{(4)}(x), \ldots, f^{(n)}(x) \\
y^{\prime \prime}(x), y^{\prime \prime \prime}(x), y^{(4)}(x), \ldots, y^{(n)}(x) \\
\frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d y^{3}}, \frac{d^{4} y}{d y^{4}}, \ldots, \frac{d^{n} y}{d y^{n}} .
\end{gathered}
$$

It is interesting to note that the notation for $\frac{d^{2} y}{d x^{2}}$ may be viewed as an attempt to express $\frac{d}{d x}\left(\frac{d y}{d x}\right)$ more compactly.
Analogously, $\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d y}{d x}\right)\right)=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}$.

For the following exercises, use the graph of $y=f(x)$ to sketch the graph of its derivative $f^{\prime}(x)$.

For the following exercises, the given limit represents the derivative of a function $y=f(x)$ at $x=a$. Find $f(x)$ and a.
$\lim _{h \rightarrow 0} \frac{(1+h)^{2 / 3}-1}{h}$

$$
\lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{\left[2(3+h)^{2}-(3+h)\right]-15}{h}
$$

For the following function
a. sketch the graph and
b. use the definition of a derivative to show that the function is not differentiable at $x=1$.

$$
f(x)=\left\{\begin{array}{l}
2 \sqrt{x}, 0 \leq x \leq 1 \\
3 x-1, x>1
\end{array}\right.
$$

